Edit File: machine-learning.js
/*! firebase-admin v9.12.0 */ "use strict"; /*! * Copyright 2020 Google Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ Object.defineProperty(exports, "__esModule", { value: true }); exports.Model = exports.MachineLearning = void 0; var machine_learning_api_client_1 = require("./machine-learning-api-client"); var error_1 = require("../utils/error"); var validator = require("../utils/validator"); var machine_learning_utils_1 = require("./machine-learning-utils"); var deep_copy_1 = require("../utils/deep-copy"); var utils = require("../utils"); /** * The Firebase Machine Learning class */ var MachineLearning = /** @class */ (function () { /** * @param {FirebaseApp} app The app for this ML service. * @constructor */ function MachineLearning(app) { if (!validator.isNonNullObject(app) || !('options' in app)) { throw new error_1.FirebaseError({ code: 'machine-learning/invalid-argument', message: 'First argument passed to admin.machineLearning() must be a ' + 'valid Firebase app instance.', }); } this.appInternal = app; this.client = new machine_learning_api_client_1.MachineLearningApiClient(app); } Object.defineProperty(MachineLearning.prototype, "app", { /** * Returns the app associated with this ML instance. * * @return {FirebaseApp} The app associated with this ML instance. */ get: function () { return this.appInternal; }, enumerable: false, configurable: true }); /** * Creates a model in Firebase ML. * * @param {ModelOptions} model The model to create. * * @return {Promise<Model>} A Promise fulfilled with the created model. */ MachineLearning.prototype.createModel = function (model) { var _this = this; return this.signUrlIfPresent(model) .then(function (modelContent) { return _this.client.createModel(modelContent); }) .then(function (operation) { return _this.client.handleOperation(operation); }) .then(function (modelResponse) { return new Model(modelResponse, _this.client); }); }; /** * Updates a model in Firebase ML. * * @param {string} modelId The id of the model to update. * @param {ModelOptions} model The model fields to update. * * @return {Promise<Model>} A Promise fulfilled with the updated model. */ MachineLearning.prototype.updateModel = function (modelId, model) { var _this = this; var updateMask = utils.generateUpdateMask(model); return this.signUrlIfPresent(model) .then(function (modelContent) { return _this.client.updateModel(modelId, modelContent, updateMask); }) .then(function (operation) { return _this.client.handleOperation(operation); }) .then(function (modelResponse) { return new Model(modelResponse, _this.client); }); }; /** * Publishes a model in Firebase ML. * * @param {string} modelId The id of the model to publish. * * @return {Promise<Model>} A Promise fulfilled with the published model. */ MachineLearning.prototype.publishModel = function (modelId) { return this.setPublishStatus(modelId, true); }; /** * Unpublishes a model in Firebase ML. * * @param {string} modelId The id of the model to unpublish. * * @return {Promise<Model>} A Promise fulfilled with the unpublished model. */ MachineLearning.prototype.unpublishModel = function (modelId) { return this.setPublishStatus(modelId, false); }; /** * Gets a model from Firebase ML. * * @param {string} modelId The id of the model to get. * * @return {Promise<Model>} A Promise fulfilled with the unpublished model. */ MachineLearning.prototype.getModel = function (modelId) { var _this = this; return this.client.getModel(modelId) .then(function (modelResponse) { return new Model(modelResponse, _this.client); }); }; /** * Lists models from Firebase ML. * * @param {ListModelsOptions} options The listing options. * * @return {Promise<{models: Model[], pageToken?: string}>} A promise that * resolves with the current (filtered) list of models and the next page * token. For the last page, an empty list of models and no page token are * returned. */ MachineLearning.prototype.listModels = function (options) { var _this = this; if (options === void 0) { options = {}; } return this.client.listModels(options) .then(function (resp) { if (!validator.isNonNullObject(resp)) { throw new machine_learning_utils_1.FirebaseMachineLearningError('invalid-argument', "Invalid ListModels response: " + JSON.stringify(resp)); } var models = []; if (resp.models) { models = resp.models.map(function (rs) { return new Model(rs, _this.client); }); } var result = { models: models }; if (resp.nextPageToken) { result.pageToken = resp.nextPageToken; } return result; }); }; /** * Deletes a model from Firebase ML. * * @param {string} modelId The id of the model to delete. */ MachineLearning.prototype.deleteModel = function (modelId) { return this.client.deleteModel(modelId); }; MachineLearning.prototype.setPublishStatus = function (modelId, publish) { var _this = this; var updateMask = ['state.published']; var options = { state: { published: publish } }; return this.client.updateModel(modelId, options, updateMask) .then(function (operation) { return _this.client.handleOperation(operation); }) .then(function (modelResponse) { return new Model(modelResponse, _this.client); }); }; MachineLearning.prototype.signUrlIfPresent = function (options) { var modelOptions = deep_copy_1.deepCopy(options); if (machine_learning_api_client_1.isGcsTfliteModelOptions(modelOptions)) { return this.signUrl(modelOptions.tfliteModel.gcsTfliteUri) .then(function (uri) { modelOptions.tfliteModel.gcsTfliteUri = uri; return modelOptions; }) .catch(function (err) { throw new machine_learning_utils_1.FirebaseMachineLearningError('internal-error', "Error during signing upload url: " + err.message); }); } return Promise.resolve(modelOptions); }; MachineLearning.prototype.signUrl = function (unsignedUrl) { var MINUTES_IN_MILLIS = 60 * 1000; var URL_VALID_DURATION = 10 * MINUTES_IN_MILLIS; var gcsRegex = /^gs:\/\/([a-z0-9_.-]{3,63})\/(.+)$/; var matches = gcsRegex.exec(unsignedUrl); if (!matches) { throw new machine_learning_utils_1.FirebaseMachineLearningError('invalid-argument', "Invalid unsigned url: " + unsignedUrl); } var bucketName = matches[1]; var blobName = matches[2]; var bucket = this.appInternal.storage().bucket(bucketName); var blob = bucket.file(blobName); return blob.getSignedUrl({ action: 'read', expires: Date.now() + URL_VALID_DURATION, }).then(function (signUrl) { return signUrl[0]; }); }; return MachineLearning; }()); exports.MachineLearning = MachineLearning; /** * A Firebase ML Model output object. */ var Model = /** @class */ (function () { function Model(model, client) { this.model = Model.validateAndClone(model); this.client = client; } Object.defineProperty(Model.prototype, "modelId", { get: function () { return extractModelId(this.model.name); }, enumerable: false, configurable: true }); Object.defineProperty(Model.prototype, "displayName", { get: function () { return this.model.displayName; }, enumerable: false, configurable: true }); Object.defineProperty(Model.prototype, "tags", { get: function () { return this.model.tags || []; }, enumerable: false, configurable: true }); Object.defineProperty(Model.prototype, "createTime", { get: function () { return new Date(this.model.createTime).toUTCString(); }, enumerable: false, configurable: true }); Object.defineProperty(Model.prototype, "updateTime", { get: function () { return new Date(this.model.updateTime).toUTCString(); }, enumerable: false, configurable: true }); Object.defineProperty(Model.prototype, "validationError", { get: function () { var _a, _b; return (_b = (_a = this.model.state) === null || _a === void 0 ? void 0 : _a.validationError) === null || _b === void 0 ? void 0 : _b.message; }, enumerable: false, configurable: true }); Object.defineProperty(Model.prototype, "published", { get: function () { var _a; return ((_a = this.model.state) === null || _a === void 0 ? void 0 : _a.published) || false; }, enumerable: false, configurable: true }); Object.defineProperty(Model.prototype, "etag", { get: function () { return this.model.etag; }, enumerable: false, configurable: true }); Object.defineProperty(Model.prototype, "modelHash", { get: function () { return this.model.modelHash; }, enumerable: false, configurable: true }); Object.defineProperty(Model.prototype, "tfliteModel", { get: function () { // Make a copy so people can't directly modify the private this.model object. return deep_copy_1.deepCopy(this.model.tfliteModel); }, enumerable: false, configurable: true }); Object.defineProperty(Model.prototype, "locked", { /** * Locked indicates if there are active long running operations on the model. * Models may not be modified when they are locked. */ get: function () { var _a, _b; return ((_b = (_a = this.model.activeOperations) === null || _a === void 0 ? void 0 : _a.length) !== null && _b !== void 0 ? _b : 0) > 0; }, enumerable: false, configurable: true }); Model.prototype.toJSON = function () { // We can't just return this.model because it has extra fields and // different formats etc. So we build the expected model object. var jsonModel = { modelId: this.modelId, displayName: this.displayName, tags: this.tags, createTime: this.createTime, updateTime: this.updateTime, published: this.published, etag: this.etag, locked: this.locked, }; // Also add possibly undefined fields if they exist. if (this.validationError) { jsonModel['validationError'] = this.validationError; } if (this.modelHash) { jsonModel['modelHash'] = this.modelHash; } if (this.tfliteModel) { jsonModel['tfliteModel'] = this.tfliteModel; } return jsonModel; }; /** * Wait for the active operations on the model to complete. * @param maxTimeMillis The number of milliseconds to wait for the model to be unlocked. If unspecified, * a default will be used. */ Model.prototype.waitForUnlocked = function (maxTimeMillis) { var _this = this; var _a, _b; if (((_b = (_a = this.model.activeOperations) === null || _a === void 0 ? void 0 : _a.length) !== null && _b !== void 0 ? _b : 0) > 0) { // The client will always be defined on Models that have activeOperations // because models with active operations came back from the server and // were constructed with a non-empty client. return this.client.handleOperation(this.model.activeOperations[0], { wait: true, maxTimeMillis: maxTimeMillis }) .then(function (modelResponse) { _this.model = Model.validateAndClone(modelResponse); }); } return Promise.resolve(); }; Model.validateAndClone = function (model) { if (!validator.isNonNullObject(model) || !validator.isNonEmptyString(model.name) || !validator.isNonEmptyString(model.createTime) || !validator.isNonEmptyString(model.updateTime) || !validator.isNonEmptyString(model.displayName) || !validator.isNonEmptyString(model.etag)) { throw new machine_learning_utils_1.FirebaseMachineLearningError('invalid-server-response', "Invalid Model response: " + JSON.stringify(model)); } var tmpModel = deep_copy_1.deepCopy(model); // If tflite Model is specified, it must have a source consisting of // oneof {gcsTfliteUri, automlModel} if (model.tfliteModel && !validator.isNonEmptyString(model.tfliteModel.gcsTfliteUri) && !validator.isNonEmptyString(model.tfliteModel.automlModel)) { // If we have some other source, ignore the whole tfliteModel. delete tmpModel.tfliteModel; } // Remove '@type' field. We don't need it. if (tmpModel['@type']) { delete tmpModel['@type']; } return tmpModel; }; return Model; }()); exports.Model = Model; function extractModelId(resourceName) { return resourceName.split('/').pop(); }
Back to File Manager